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SAMPLE SIZE AND MODELING ACCURACY  

WITH DECISION-TREE BASED DATA MINING TOOLS 

 

ABSTRACT 

Given the cost associated with modeling very large datasets and over-fitting issues of 

decision-tree based models, sample based models are an attractive alternative – provided that the 

sample based models have a predictive accuracy approximating that of models based on all 

available data. This paper presents results of sets of decision-tree models generated across 

progressive sets of sample sizes.  The models were applied to two sets of actual client data using 

each of six prominent commercial data mining tools.   

The results suggest that model accuracy improves at a decreasing rate with increasing 

sample size.  When a power curve was fitted to accuracy estimates across various sample sizes, 

more than 80 percent of the time accuracy within 0.5 percent of the expected terminal (accuracy 

of a theoretical infinite sample) was achieved by the time the sample size reached 10,000 

records.  Based on these results, fitting a power curve to progressive samples and using it to 

establish an appropriate sample size appears to be a promising mechanism to support sample 

based modeling for a large dataset.  

 

INTRODUCTION 

 Data mining has emerged as a practical analytical tool primarily on the basis of its ability 

to deal with the large volume of data available from databases and data warehouses.  Rapid 

increases in processor speed coupled with continuing decreases in the cost of mass storage 

devices and other computer hardware have made it practical to collect and maintain massive 

databases. Data mining software is viewed as a tool that can perform undirected or semi-directed 

analysis and, thus, can be applied to the full length and width of very large data sets at much 

lower costs than analytical techniques requiring stronger human direction.  While there is an 

inherent bias toward applying data mining tools to the full volume of available data, issues of 

cost and model over-fitting suggest that use of data mining models based on a sample of 
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available data may be appropriate in many instances.  Thus, the relationship between sample size 

and model accuracy is an important issue for data mining.    

Despite the increases in processing speeds and reductions in processing cost, applying 

data mining tools to analyze all available data is costly in terms of both dollars and time required 

to generate and implement models.  In discussing differences between statistical and data mining 

approaches, Mannila [2000] suggests that: “The volume of the data is probably not a very 

important difference: the number of variables or attributes often has a much more profound 

impact on the applicable analysis methods.  For example, data mining has tackled width 

problems such as what to do in situations where the number of variables is so large that looking 

at all pairs of variables is computationally infeasible.”  The above quote suggests that the benefit 

of data mining tools comes from their ability to deal more effectively with complex interactions 

among variables rather than from the ability to process massive volumes of instances.   

 It has been noted that decision tree based data mining tools are subject to over-fitting as 

the size of the data set increases, Domingos [1998]  and Oates and Jensen [1997]. As Oates and 

Jensen [1998] note, “Increasing the amount of data used to build a model often results in a linear 

increase in model size, even when that additional complexity results in no significant increase in 

model accuracy.” In a similar vein Musick, Catlett, and Russell [1993] suggest that “often the 

economically rational decision is to use only a subset of the available data.”  A variety of pruning 

algorithms have been proposed to deal with this problem, and most commercial data mining 

software using decision tree based algorithms incorporate the use of pruning algorithms. While 

pruning helps to limit the proportion by which model complexity increases as the amount of data 

increases, its effectiveness can only be assessed by examining the responsiveness of model 

complexity and model accuracy to changes in data set size. 

Sampling can also be used as a tool to lower the cost of maintaining data mining based 

operational models.  Lee, Cheung, and Kao [1998] have proposed a dynamic sampling technique 

to test for changes in a dataset.   Their technique suggests using a sample of data to detect when 

enough change has occurred in the structure of a dataset to justify re-estimation of a model using 

the full set of available data. In addition to this monitoring role, periodic re-estimation of a 

decision tree model using a moderate sized sample of data may be the most cost effective way to 

maintain a reliable predictive model.  For example, an organization might find it equally costly 
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to re-analyze a model on the basis of  a sample of 10,000 records once a month or to re-analyze 

the model based on all available data once a year.  In such a case, modeling based on a sample 

will be the most effective strategy if the phenomenon being modeled is relatively dynamic and 

models based on the sample approximate the accuracy of  a model based on all available data.   

Prior studies of sampling in data mining have used public domain data modeling tools 

and relatively small data sets from the UCI repository.  In this paper we describe the results of 

models generated from the systematic sampling of data from two corporate datasets one of which 

contained more than 1.5 million records.  The target variable for each data set is a binary 

variable. Models are generated with each of six prominent commercial data mining tools.  

Statistical analyses across the tools, over varying sample sizes, and with respect to other relevant 

factors are presented.  The results provide an insight into the response of model accuracy with 

respect to increases in sample size, and also allow us to examine the extent to which that 

response varies across different data mining tools and across varied data sets.  

REVIEW OF PREVIOUS SAMPLING STUDIES 

The effectiveness of data mining models based on sampling from datasets has not been 

widely studied.  However, there are a few studies that have addressed this topic which can be 

used as the starting point for this study. 

John and Langley [1996] applied arithmetic progressive sampling (e.g. samples of 100, 

200, 300, 400, etc.) to 11 of the UCI repository datasets.  Because many of the datasets used 

were small, they first replicated each record 100 times to simulate a large dataset. The inflated 

data set was used to generate a set of samples whose size was systematically incremented by 100 

records between samples.  A model was then generated for each sample using a “naive Bayesian 

classifier.”  The sample-based models were applied to a holdout set to evaluate their accuracy. A 

power function based regression equation was estimated as each progressive sample was 

performed, and sampling was terminated when the accuracy of the current model was within 2 

percent of the expected accuracy (based on the regression) for a model using the full dataset. 

Twenty-five sets of samples and their associated models were produced and tested for each 

dataset.   

Applying this criterion to the 11 inflated UCI repository databases, led to average final 

sample sizes ranging from 300 to 2,180 all of which were within 2 percent of the accuracy of a 
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naïve Bayesian classifier model built from the entire training set.  Limitations of this study 

include the fact that the results were generated by replicating data from small source datasets and 

that the models that were compared used naïve Bayesian classifiers. 

Frey and Fisher [1999] systematically examined the response of modeling accuracy to 

changes in sample size using the C4.5 decision tree algorithm applied to 14 datasets from the 

UCI repository.  The datasets used were all relatively small – from 57 to 3,196 observations.  

This study focused on determining the shape of the learning curve and made no attempt to 

determine an optimal sample size.  For 13 of the 14 datasets, they found that the response of 

predictive accuracy to sample size was more accurately predicted by a regression based on a 

power law function than by regressions using linear, logarithmic, or exponential functions.  The 

power coefficient varied rather substantially across the datasets (from +.118 to –1.117) .   

Provost, Jensen, and Oates [1999] modeled 3 of the larger (32,000  record CENSUS, 

100,000 record LED, and 100,000 record Waveform) UCI repository datasets using differing 

progressive sampling techniques. Progressive sampling begins with a relatively small sample 

from the dataset. Next, a model is created and run against a holdout dataset to test its accuracy.  

Then a larger sample is used to generate another model whose accuracy also is tested on the 

holdout set. The process is repeated for models based on progressively larger samples, until some 

standard accuracy criteria is met.   

The primary aim of their paper was to compare the efficiency of alternative progressive 

sampling techniques as measured by the computation time required to achieve a standard degree 

of accuracy.  Arithmetic, geometric, and dynamic progressive sampling techniques were 

evaluated.  Arithmetic progressive sampling uses equal absolute increments between samples. 

For example, increments of 100 ( 100, 200, 300, 400) or increments of 500 (500, 1,000, 1,500, 

2,000).  Geometric progressive sampling uses equal proportional increments and an arbitrary 

initial size. For example, incremental doubling with an initial sample size of 100 would use 

samples of 100, 200, 400, 800.  The dynamic progressive sampling technique used by Provost, 

Jensen, and Oates involved: (1) initially estimating and testing models based on samples of 100, 

200, 300, 400, and 500, (2) estimating a power function based learning curve based on results for 

those models, and (3) selecting the next sample to be the size required to achieve the accuracy 

criteria according to the learning curve. 
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The initial accuracy criteria used called for sampling to progress until the average 

accuracy for the set of the last 3 samples is no more than 1% less accurate than results from a 

model based on all available data.  At that point, the middle sample of the set is designated as the 

minimum sample meeting the criterion. This criterion was applied to an arithmetic sampling 

schedule with increments of 1,000.  The criterion was met at the level of 2,000 records for the 

LED dataset, at 8,000 for the CENSUS dataset, and at 12,000 for the WAVEFORM dataset.  

Since this measure compares sample based models to the accuracy of a model based on the full 

dataset, it is clearly designed as a test of how accurate models based on various sample sizes are 

rather than as a method for determining what sample size is sufficient for a dataset whose 

population has not been modeled. 

PLAN OF THE CURRENT STUDY 

Our study incorporates sampling structures and evaluation techniques used in prior 

studies, but applies these techniques to real client data sets and models constructed using 

alternative commercial data mining tools. 

For each data set to be analyzed, a holdout set of records was first removed and then a 

geometric progression of sample sizes was generated from the remaining training data set. The 

samples start at a size of 500 records and double for each new sample up to final a sample size of 

32000, resulting in sample sizes of 500, 1,000, 2,000, 4,000, 8,000, 16,000, and 32,000.  AN 

RS/6000 Sp/2 system provided to the CDI by IBM was used fro data preparation. For each 

sample size, a set of four distinct samples was generated with replacement.  A model was created 

for each sample at each size using each of six data mining software tools.  The tool used 

included: name1, name2, name3, name4, name5, name6. 

The staff of the Center for Data Insight includes student workers responsible for 

mastering the use of a number of commercial data mining tools supplied by vendor partners.  

The analyses presented here compare results obtained using decision tree models from the six 

different commercial data mining tools, and built by the student expert on each tool.   

Nondisclosure agreements prevent us from identifying the tools in the comparative analyses – 

they are labeled as tool A through tool F in the analyses presented here. 

Our goal has been to apply the sampling structure described above to a variety of data 

sets associated with “real” business customers of the Center.  Initially we present results for two 



 7 

data sets with binary target variables relating to differing aspects of customer relationship 

management issues. These data sets and target variables are briefly described below. 

Dataset 1 consists of data from a company selling computer related products largely to 

wholesale customers. The target variable for this dataset is a binary flag indicating whether a 

customer is still “active” or is a “dead” customer based on an appropriate criteria related to the 

recency of their last purchase.  The proportion of active customers was approximately two-thirds.   

This dataset is relatively narrow  (15 explanatory variables) with several of the explanatory 

variables containing cardinal numeric values. The full dataset includes approximately 50,000 

customer records. Because of the relatively small size of dataset 1, a holdout set of  10,000 

records was used for testing the models.   

Dataset 2 tracks retail customers of a firm selling a broad range of products.  The target 

variable is a binary variable classifying customers as “better than average” or “poorer than 

average.” Customers were considered better than average if their score based on a weighted 

average of a set of measures of customer value was higher than average.1 Thus, the target 

variable is evenly balanced between “better than average” and “poorer than average” customers. 

This dataset is over 100 variables in width, most of the explanatory variables are categorical, and 

the full dataset includes about 1.5 million customer records. A holdout set of 50,000 records was 

used for testing the models of the second dataset. 

Since the datasets described above were from prior customers of the Center, the student 

modelers were reasonably familiar with the data.  The modelers were encouraged to treat the 

study as a contest and build the most accurate model possible for their tool using any pruning 

parameters or other modeling options they felt appropriate.  However, they were told to use a 

common model across all samples.  Thus, they applied modeling options based on their apriori 

experience with the tool and maintained consistent modeling options across the various samples 

for a given dataset. The proportion of records correctly classified was used as the criteria for 

measuring the success of models.     

                                                
1 The measure used was a weighting of the recency of last purchase, frequency of purchases, and monetary value of  
purchases. 
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SUMMARY MODEL RESULTS 

 In examining model results, we will first look at summary measures comparing the 

performance of each tool at various sample sizes for each dataset.  Table 1 and Figures 1 and 2 

present averages (across the four samples) of the percentage of cases correctly classified for each 

tool at each sample size.  In general, accuracy tends to increase at a decreasing rate as sample 

size increases.  For dataset 1, tool B performed substantially less well than the others for all 

sample sizes below 16,000.  The remaining 5 tools show relatively stable patterns with accuracy 

increasing at a decreasing rate. For all of the tools, model accuracy increases only modestly 

beyond the 16,000 sample size.  For dataset 2, all of the tools produced rather smooth curves 

with accuracy increasing at a decreasing rate and becoming relatively flat for sample sizes of 

8,000 or more. 

 

Table 1 
Average Percentage Correctly Classified by Tool and Dataset 

       
Sample Size Tool A Tool B Tool C Tool D Tool E Tool F 
       
Dataset 1       

500 82.07 71.82 80.97 80.28 83.41 83.84
1,000 83.88 67.87 83.06 81.18 85.17 83.62
2,000 84.23 66.29 83.48 82.70 85.88 84.60
4,000 84.92 68.96 85.85 83.15 86.31 85.94
8,000 85.24 69.91 85.36 82.98 86.45 82.78

16,000 85.39 85.80 85.84 86.88 86.21 86.48
32,000 85.23 85.80 86.11 87.70 86.51 86.78

       
Dataset 2       

500 86.04 86.78 90.35 82.40 87.41 89.70
1,000 87.38 89.16 93.58 88.33 88.60 89.91
2,000 88.08 90.36 93.19 88.65 89.63 91.19
4,000 90.33 91.45 93.45 89.85 90.63 91.96
8,000 89.92 91.94 93.63 90.10 91.42 92.40

16,000 90.34 92.57 93.07 90.23 91.56 92.87
32,000 90.60 93.11 93.95 90.55 91.61 93.34
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Figure 1 

Model Accuracy vs Sample Size: Dataset 1
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Figure 2 

Model Accuracy vs. Sample Size: Dataset 2
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Within a given dataset tools that do well for small sample sizes also tended to do well for 

larger sizes, however, there was no clear pattern of dominance across the two datasets.  Tool E 

provided the most consistent performance on dataset 1, while tool D showed the best 

performance at the largest sample sizes.  Both of these tools were near the bottom in their 

performance for dataset 2.  At the same time, tool C provided the strongest accuracy for dataset 2 

(particularly at small sample sizes), but had average performance for dataset 1.   

 Table 2 presents summary univariate analysis of variance results for the two datasets.  

The sample size and the tool used as well as the interaction between those 2 factors were used as 

explanatory factors.  As Table 2 indicates, both factors and their interaction are statistically 

significant for both datasets.  

Also presented are results of the Tukey test for homogeneous subsets for each factor.  

This test identifies sets of values for each factor whose means do not differ significantly at the 

.05 level.  Results for both datasets show that accuracy increases with sample size.  Results for 

dataset 2 show a plateauing of accuracy – accuracy for all sample sizes above 4,000 fit into the 

same homogeneous subset.  Dataset 1 results place only the 16,000 and 32,000 sample sizes in 

the final homogeneous subset.  This is primarily due to the unusual pattern of results for Tool B. 

If tool B is excluded for dataset 1, all sample sizes greater than 4,000 once again fit in the same 

homogeneous subset.  The Tukey test for the tool factor shows that there are significant 

differences in average accuracy, but no strong systematic patterns that hold up across both 

datasets. 

Finding an Optimal Sample Size 

 In the previous section all of the data presented was based on average responses across 

the four separate samples that were generated for each sample size. While this information is of 

interest, the robustness of the results across individual samples is perhaps of more interest. 

For someone contemplating using sample data for modeling, knowing that 90 percent of the time 

a sample of 8,000 records will be accurate to within 0.5 percent of the accuracy of a model based 

on all available data is likely to be more useful than knowing that the average sample of 8,000 

records is only .25 percent less accurate than a model based on all available data.  Sampling will 

be accepted if there is only a small probability that its accuracy will be outside of acceptable 

bounds.  In addition, it is likely that the sample size required to approach the accuracy of a model 
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based on all available data will vary considerably from one dataset to another.  This suggests that 

sampling should ideally be approached on a dataset-by-dataset basis.  Under this scheme, a 

number of progressive samples at relatively small sizes would be used to build models.  Some 

measurement designed to test for convergence in the accuracy of the models would then be 

applied to determine whether additional larger samples were needed to achieve acceptable model 

accuracy. 

Table 2 

Univariate Analysis of Variance Results 
Dataset1  Dataset 2 

Adjusted R-Squared 0.891        0.753     
               

Source   F Value Signif.      F Value Signif.   
Corrected Model 34.31 0.000      13.44 0.000   
Intercept  332167.86 0.000      818558.80 0.000   
Size  42.05 0.000      44.73 0.000   
Tool  161.22 0.000      46.37 0.000   
Size*Tool   11.61 0.000      1.69 0.024   
          

Tukey Test for Homogeneous Subsets 
Dataset 1  Dataset 2 

Homogeneous Subset  Homogeneous Subset 
Sample Size 1 2 3 4  1 2 3 4 

500 80.40      87.12     
1000 80.80 80.80       89.49    
2000 81.19 81.19 81.19      90.18 90.18   
4000    82.52       91.28 91.28 
8000   82.12 82.12        91.57 

16000     86.10      91.77 
32000     86.36      92.19 

Signif. 0.755 0.174 0.170 0.999    0.517 0.054 0.178 
          

Homogeneous Subset  Homogeneous Subset 
Tool Used 1 2 3    1 2 3 4 

Tool A   84.42 84.42    88.96     
Tool B 73.78        90.77 90.77   
Tool C   84.38 84.38        93.03 
Tool D   83.55     88.59     
Tool E    85.71      90.12    
Tool F   84.86 84.86       91.62   

Signif.   0.089 0.083    0.894 0.428 0.133   
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 The models created in this study followed a fixed sampling scheme using progressive 

samples form 500 to 32,000 records.  However, tests of progressive sampling methodologies can 

be applied ex-post.  We can evaluate the sample size that would have been required to meet a 

particular convergence criterion.  Two alternative methods for measuring convergence across 

progressive samples are presented here.  The first is based on using moving averages of model 

accuracy while the second uses statistical analysis of model results. 

 Oates and Jensen [1997] used a convergence measure based on examining the 

improvement in model accuracy as the sample size was progressively increased to test for 

convergence.  Under this scheme, when the improvement in accuracy drops below a prescribed 

level sampling is terminated.  For this criterion to be effective, the improvement in model 

accuracy as sample size increases needs to be relatively stable and monotonically decreasing in 

magnitude.  If this is the case, it is reasonable to assume that, once the improvement in model 

accuracy drops below a specified limit, it would stay below that limit for all larger sample sizes 

as well, and that a plateau in model accuracy has been achieved.  To minimize the chance of 

improperly terminating due to a single non-representative sample, a moving average of the 

accuracy of the last three samples is maintained and sampling is terminated when the 

improvement in this moving average drops below a specified convergence criterion (1 percent in 

Oates and Jensen’s paper). 

 In adapting this technique, we used a weighted average of the last 3 samples. That is, the 

moving average model accuracy for a given sample sizes is: 

  AccMAn = (Szn*Accn + Szn-1*Accn-1 + Szn-2*Accn-2)/( Szn + Szn-1 + Szn-2) 
 
where Accn is the measured model accuracy for the nth progressive sample, Szn is the size of the 

nth progressive sample,  and AccMAn is the moving average accuracy measure for the nth 

progressive sample.  The convergence test applied calls for sampling to terminate if 

 AccMAn – AccMAn-1 < ?  

where ?  is the convergence criterion.  For this study, values of both 1 percent and 0.5 percent are 

used for ? . 

 Summary results for this convergence criterion (applied to the models generated from 

each of the four sample-sets for each tool across the two datasets) are presented in Table 3.  

When a 1 percent convergence criterion is used, convergence is achieved by the time a sample 
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size of 8,000 records is reached in almost every instance across both datasets.  When the 0.5 

percent criterion is used, there is more variety in the sample size required.  However, three-

quarters of the sample-set/tool combinations for dataset 1, and over 60 percent of the sample-set/ 

tool combinations for dataset 2 reached convergence at 8,000 records or less.   

Table 3 

Moving Average Convergence Results for Sampling Runs 
          

  Using 1% Convergence Criterion   Using 0.5% Convergence Critireon 
            

Dataset1 Dataset 2  Dataset 1 Dataset 2 
Sample size at 
Convergence Number Pct. Number Pct.   Number Pct. Number Pct. 

4,000 14 58.3% 11 45.8% 7 29.2% 5 20.8% 
8,000 9 37.5% 13 54.2% 11 45.8% 10 41.7% 

16,000 0 0.0% 0 0.0% 3 12.5% 3 12.5% 
32,000 0 0.0% 0 0.0% 0 0.0% 4 16.7% 

> 32,000 1 4.2% 0 0.0% 3 12.5% 2 8.3% 
                    
Unstable* 8 33.3% 2 8.3%  10 41.7% 6 25.0% 
            
* A set of samples is considered unstable if the convergence criterion is met at one sample size 
but is not met for some larger sample size. 
 

Since this analysis was performed ex-post, we were able to test the stability of sample-

sets meeting the convergence criteria at sample sizes less than 32,000.  Moving average accuracy 

values for each sample size up to 32,000 were always computed.  If a sample-set meeting the 

convergence criterion for one sample size would have failed that test at some larger sample size 

it was classified as unstable.  For example, if sample-set 2 for tool C met the 1 percent 

convergence criterion at a sample size of 8,000, we would look at the change in moving average 

accuracy from 8,000 to 16,000 and from 16,000 to 32,000.  If either of these showed an 

improvement of more than 1 percent, the model would be classified as unstable for that sample-

set.  The results of Table 3 show only 2 of 24 models to be unstable for dataset 2 with the 

convergence criterion set at 1 percent.  However one-third of the sample-set/tool combinations 

show unstable results for dataset 1. When the convergence criterion is tightened to 0.5 percent, 

unstable results are found for one-quarter of the sample-set tool combinations of dataset 2 and 

over 40 percent of those for dataset 1.   
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While the moving average results are interesting, the number of exceptions found is 

somewhat troubling.  Also, there is no means of estimating just how close a sample-based 

model’s accuracy is to the accuracy that could be expected from a model using all available data.  

To provide such a convergence criterion we need to produce a model of the shape of the 

response of accuracy to changes in sample size that either provides an upper limit on accuracy as 

simple size increases or estimates a curve that can be extrapolated to estimate expected accuracy 

for the total number of records available in the dataset.   

Casual observation of Figures 1 and 2 suggests a shape that is consistent with a log-linear 

model or a power curve model.  Power curve models approach a finite limit while log-linear 

models are theoretically unbounded.  Because the dependent variable in this study is the 

percentage of cases correctly classified, boundedness is an attractive property.  In addition, Frey 

and Fisher’s [1999] results cited earlier indicate that the power curve tends to provide a strong fit 

(stronger than linear, log-linear, or exponential models in 13 of the 14 datasets they modeled).  

For these reasons, a model based on the power curve was used in analyzing the response of 

accuracy to sample size.   

The form of model used was:                      

 acc(n) = a – benc 

where n is the sample size, acc(n) is the expected accuracy of a model whose sample sizes is n, a, 

b, and c are parameters to be estimated, and e is the natural logarithm.  For well-behaved systems 

the value of b is positive and the value of c is negative.  When this is the case, the term  benc 

approaches 0 as n becomes large.  Thus, the value of a can be interpreted as an asymptotic value 

representing the accuracy that would be produced by the model with an infinitely sized dataset 

(hereafter terminal accuracy).  The values of the b and c parameters interact in determining the 

shape of the response curve in a way that makes their direct interpretation somewhat difficult.  It 

is of more interest to apply the model and obtain estimates of the sample size required to bring 

the expected model accuracy within a fixed percentage of the asymptotic accuracy.   

 Table 4 presents summary results of nonlinear regressions using this model for each 

sample-set across tools and datasets.  Each model is based on all 7 sample sizes from 500 to 

32,000. Given the complexity of the non-linear model to be estimated, generation of stable 

models for samples up to some smaller sample size is problematic.  Even with all sample sizes 
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included, the models have only 3 degrees of freedom.  R-Squared values are not shown, but 

generally suggest that the models are rather strong. Sixteen of the 24 models generated from 

dataset 1 had an R-squared greater than 0.9, while 13 of the models for dataset 2 met this 

criterion. The column labeled terminal accuracy presents the a parameter, the estimated terminal 

accuracy.  In addition, the estimated sample sizes required to come within 1 percent and within 

0.5 percent of this level of accuracy are also presented.  In two instances, the a parameter was 

greater than 100 percent leading to an unstable model.  Those instances are shown as the starred 

entries. 

It is interesting to note the degree of consistency in the a parameter across sample-sets for 

each tool. For dataset 1, 3 of the tools had less than 1 percent variation in the a parameter across 

the four sample-sets, while 4 of the 6 tools met this criterion for dataset 2.   

Table 4 also suggests that relatively small samples will often produce models whose accuracy 

approaches that of an unlimited sample size.  For 22 of the 24 models from dataset 2, accuracy 

came within 0.5 percent of the terminal accuracy at a sample size less than 10,000.  For dataset 1, 

models for tools B and D consistently approach their terminal accuracy only at a substantially 

higher sample size. Thus, only 15 of the 24 models based on dataset 1 came within 0.5 percent of 

their terminal accuracy at a sample size less than 10,000.   

Overall, the results in Table 4 suggest that relatively small samples can often be used to 

build models whose accuracy approximates that of models built from the full set of available 

data.  Also, these results are reasonably comparable to those of the Provost, Jensen, and Oates 

paper that found convergence to 1 percent at sample sizes between 2,000 and 12,000 for selected 

datasets in the UCI repository. However, the number of exceptions is somewhat troubling. Also, 

the systematic nature of the exceptions reinforces the idea that the sample size needed to 

approach terminal accuracy is likely to vary from dataset to dataset. 

One could think of the models presented in Table 4 as a procedure to be applied in 

determining the sample size needed to adequately model a particular dataset.  A progressive set 

of samples for all sizes up a certain limit would be modeled and a power curve estimated.  If the 

power curve suggests that a larger sample is needed to come within a desired limit of terminal 

accuracy, an additional larger sample would be taken. Additional sampling might be continued 

on the same basis (double the last sample size used) and the power curve re-estimated until the 
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convergence criterion is met. Alternatively, one additional sample might be generated at the size 

required to reach the convergence criterion based on the initial power curve estimate.  

Table 4 

Sample Size Required to Achieve Convergence Across Alternative 
Tools and Datasets  

        

  Dataset 1 Dataset 2 
        

 Sample to approach limit Sample to approach limit 
Tool 

Sample 
-Set 

Terminal 
Accuracy within 1 % within 0.5 % 

 Terminal     
Accuracy within 1 % within 0.5 % 

Tool A 1 85.14 1,942 3,083 90.54 4,921 6,778 
 2 85.30 1,909 3,271 90.12 2,511 3,515 
 3 85.25 2,018 2,761 91.12 4,721 8,199 
  4 85.19 788 943 90.09 2,261 2,926 
Tool B 1 96.67 95,216 114,669 92.63 3,548 4,739 
 2 **** **** **** 92.56 4,122 5,854 
 3 91.05 57,361 69,785 92.33 3,387 4,810 
  4 91.59 54,796 66,055 92.35 2,068 2,608 
Tool C 1 85.85 3,565 5,020 94.43 14,541 25,877 
 2 85.92 4,046 6,785 **** **** **** 
 3 85.51 1,249 1,503 93.55 750 875 
  4 85.93 2,959 3,977 94.23 593 625 
Tool D 1 87.11 10,146 13,244 89.92 1,551 1,859 
 2 94.93 131,070 165,907 90.59 5,016 9,264 
 3 89.30 35,466 47,547 89.92 986 1,119 
  4 88.05 21,147 28,494 90.22 1,722 2,242 
Tool E 1 86.61 1,549 2,155 91.63 3,656 5,742 
 2 86.35 1,216 2,235 90.90 1,142 1,430 
 3 86.36 1,179 1,700 91.50 3,046 4,331 
  4 86.15 874 1,049 91.71 4,004 5,481 
Tool F 1 **** **** **** 93.08 5,743 9,088 
 2 86.78 4,884 9,368 93.01 5,876 9,519 
 3 86.69 4,871 8,137 92.90 3,323 4,804 
  4 86.39 3,132 4,351 93.24 3,935 5,587 
 

In our data, assuming that samples up to 32,000 were initially created and modeled, 40 of 

the 48 sample-set/tool combinations would meet the criterion of coming within 0.5 percent of 

terminal accuracy at or before the 32,000 sample size.  Two of the remaining 8 sample-set/tool 

combinations did not produce a stable power curve, suggesting either that the full dataset be used 

for modeling or that the next progressive sample size should be applied and the power curve re-
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estimated until a stable model meeting the convergence criterion is achieved.  For the 6 sample-

set/tool combinations whose convergence sample size was larger than 32,000, a new sample at 

the size required to meet the convergence criterion would be drawn and modeled using the 

appropriate tool (or the full dataset would be used if the dataset size is less than the sample size 

to meet the convergence criterion). 

The usefulness of the approach outlined in the previous paragraph is evident for the data 

of dataset 2.  For 23 of the 24 sample-set/tool combinations, a model whose expected accuracy is 

within 0.5 percent of the terminal accuracy was found by running a data mining tool against a 

total of 65,500 records.  The computation time required for this would be substantially less than 

that required to model against the full 1.5 million record dataset.  

  

Summary 

This paper has presented the results of decision-tree models generated using systematic 

sets of progressive sample sizes.  The analyses presented here were applied to 2 sets of actual 

client data using each of 6 prominent commercial data mining tools.   

Comparisons of results across tools indicated significant differences in the effectiveness 

of the various tools in modeling particular datasets.  However, there was not a consistent pattern 

of tool performance across the 2 datasets.  The tools that performed best on dataset 1 were not 

particularly strong for dataset 2 and vice-versa.  

In general, our results suggest that model accuracy tends to increase at a decreasing rate 

with increases in sample size.  In most cases, the results were fit rather well by a model that 

assumes that the response of accuracy to increases in sample size can be specified by a power 

curve with a finite terminal value less than 100 percent.  The power curve is characterized by a 

long plateau, with values close to the terminal value at large sample sizes.  While rather erratic 

performance was observed for some of the small samples from dataset 1, accuracy almost 

universally reached a plateau by the time the 16,000 record sample size was reached.  More than 

80 percent of the time, accuracy within 0.5 percent of the expected terminal accuracy was 

achieved by the time the sample size reached 10,000 records.  Results for dataset 2 were 

substantially more consistent than those for dataset 1, reinforcing the idea that the size of sample 
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needed to achieve adequate model performs is likely to vary substantially across dataset and 

target variable characteristics. 

Our results do suggest that systematic progressive sampling often produces models 

whose expected accuracy is very close to the accuracy expected from a model based on the full 

dataset.  Fitting a power curve to a set of progressive samples and using its results to assess the 

adequacy of the samples used and determine the appropriate size for an additional sample, if 

needed, appears to be a promising mechanism for sample-based mining of a large dataset.  

This preliminary work suggests a number of avenues for further research.  Examination 

of sampling responsiveness should be extended to broader types of datasets and to non-binary 

target variables and target variables whose distribution is skewed to varying degrees.  Another 

interesting extension to this study would be the systematic application of bagging of the samples 

required to produce the accuracy responsiveness estimates, which might provide a low cost 

means to fully utilize all the samples required to apply this technique.       

         



 19

References 

Domingos, P., 1998, “Occam’s Two Razors: the Sharp and the Blunt,” Proceedings of the 

Fourth International Conference on Knowledge Discovery and Data Mining, Menlo 

Park, CA: AAAI Press, pp. 37-43. 

Frey, L. and Fisher D., 1999, “Modeling Decision Tree Performance with the Power Law,” 

Proceedings of the Seventh International Workshop on Artificial Intelligence and 

Statistics, San Francisco, CA: Morgan-Kaufmann, pp59-65. 

John, G. and Langley, P., 1996, “Static Versus Dynamic Sampling for Data Mining,” 

Proceedings of the Second International Conference on Knowledge Discovery and 

Data Mining, , AAAI Press, pp. 367-370. 

Lee, S., Cheung, D., and Kao, B., 1998, “Is Sampling Useful in Data Mining? A Case in the 

Maintenance of Discovered Association Rules,”  Data Mining and Knowledge 

Discovery,  Vol. 2, Kluwer Academic Publishers, pp. 232-262. 

Mannila, H., 2000, “Theoretical Frameworks for Data Mining,” SIGKDD Explorations, Vol. 1, 

No. 2, ACM SIGKDD, pp. 30-32. 

Musick, R., Catlett, J, and Russel, S., 1993, “Decision Theoretic Subsampling for Induction on 

Large Databases,” Proceedings of the Tenth International Conference on Machine 

Learning, San Mateo, CA: Morgan Kaufmann, pp. 212-219. 

Oates, T. and Jensen, D., 1997, “The Effects of Training Set Size on Decision Tree Complexity,” 

Machine Learning: Proceedings of the Fourteenth International Conference, 

Morgan Kaufmann, pp. 254-262. 

Oates, T. and Jensen, D., 1998, “Large Data Sets Lead to Overly Complex Models: an 

Explanation and a Solution,” Proceedings of the Fourth International Conference on 

Knowledge Discovery and Data Mining, Menlo Park, CA: AAAI Press, pp. 294-298. 

Provost, F., Jensen, D, and Oates, T., “Efficient Progressive Sampling”, Proceedings of the 

Fifth International Conference on Knowledge Discovery and Data Mining, San 

Diego, CA: ACM SIGKDD,  pp. 23-32. 

 


